Deep Generative Models:
Markov Models

Fall Semester 2024

René Vidal

Director of the Center for Innovation in Data Engineering and Science (IDEAS),
stRachleff University Professor, University of Pennsylvaniaiste,
Amazon Scholar & Chief Scientist at NORCE

& Penn



Taxonomy of Generative Models

What we’ve learned:
Deep Generative Models e PPCA

‘ / VAE

Aut(:;z%:.;:swe FI(:nV\:)-::Issed @ variable\ Energy-based
(e.g., PixelCNN)_/ (e.g., RealNVP) models models
What we study now: Implicit models Prescribed models

* Markov Models (.g., GANs) (6.g., VAEs)




Lecture Outline

* Stochastic Processes
e Definition and Examples

* Markov Models and Markov Chains
* Definition
* Transition Probability and Transition Matrix
* Examples
 Stationarity and Convergence

* Maximum Log-Likelihood for Markov Chains



Stochastic Process

* Definition: A stochastic process refers to a sequence of random variables
(X1, X5, ..., X7)

* Each X; takes values from the same sample space (1 (state space)
* You can assume X; has K statesand Q := {1, ..., K}

* Example (Bernoulli Process):
X; ~ Bernouli(p), t=1,..,T

* How many states does X; has? What is (17



Markov Property Revisited

* Issue: Modeling the joint distribution P(X{, X5, ..., X7) might require
exponentially many parameters in the absence of any assumptions on P

e Conditional Independence Assumption (Markov property):

future independent past given | | present
Xit1 1 ), P, € | X;

* Consequence: We now only need linearly many parameters:
P(xy, ., x7) = Px)P(xy | x)P(x3 |552%7) - P(xp | 26p53r=o)
= P(x)p(ez | x)P(x3 | x3) - P(xp | x7-4)




Markov Chains

* Definition: A (discrete time) Markov chain is a stochastic process (X1, X5, ..., X7)
with the Markov property

P(xq, ..., x7) = P(x)P(x3 | x)PQx3 | x3) - P(x7 | Xx7-1)

* Without Markov Property:




Parameters of Markov Chains
* Initial Probability yq, ..., mg: m; == P(X; = 0).
* Transition Probability a;;:

al] = ]P)(Xt+1 =] |Xt — l) Vl,] e ()= {1, ,K}

* This is the probability that X; transitions from state i to state j

e Matrix and Vector Notations: Row Vector

A= ¢ = i | e REXK T = |14, ...,nK‘4 € R1*K

A Markov chain is fully specified by its parameters 6: = (m, A)




Example: Markov Sentence Model

* State space ) = {all possible words}

* The following are viewed as words and included in the state space
e <s>: the start of the sentence
* Digits
* Punctuations

 Each sentence is a Markov chain where the words are random variables:

[P)(x1 P(x]x1) P(x3|x)|| P(x4|x3)|] | P(xs5|x4) P(xelxs)| | P(x7]|x6)
<S> Homework 1 B due soon

* Meaning of P(x;,1|x;): Given that the current word is x;, what is the probability
that the next word is x4, 17?



Example: DNA Sequencing

* State Space Q) = {A,C,G,T’}

* Transition Matrix A: Initial Probability Vector m:

A C G T
A 0359 0.143 0.167 0.331 A 0.25
C 0384 0.156 0.023 0.437 c 0.25
G 0306 0.199 0.150 0.345 G 0.25

T 0.25

T 0284 0.182 0.177 0.357

* Question 1: Given C, what is the probability of getting DNA sequence CTGAC?

* Answer 1:

P(CTGAC|X, = C) = Pfcm - IP’T(T|Q) - IP}(QMI) - 1$(m6) ~ 0.00403

0.182 0.345 0.167 0.384




A C G T

Example: DNA Sequencing

* State Space Q) = {A,C,G,T’} A 0359 0.143
C 0.384 0.156 0.023 0.437

G 0306 0.199 0.150 0.345

T 0.284 0.182 0.177 0.357

* Question 2: What’s the probability of X; = A given X; = C?
* Question 3: What's the probability of X5 = A?

A 0.25
c 0.25
G 0.25
T 0.25



Example: DNA Sequencing
A ¢ g g A 0.25

* State Space L = {A,C,G,T} A 0359 0.143 0167 0331
C 0384 0156 0.023 0.437 g 8'32

G 0306 0.199 0.150 0.345 >
T 0284 0.182 0.177 0.357 T 0.

* Question 2: What'’s the probability of X3 = A given X; = C?
* Question 3: What'’s the probability of X; = A?
* Answer 2: The state transition is C = x, — A for all possible x, € 1:

P(X; =AlX; =C) = szeg P(X; = Al X, :_6523)5'9P(X2 =x, | X1 =0C)

_ 0.384
= [0.384,0.156,0.023,0.437] | "5~

10.284]

* This is the inner product of the second row and first column of the transition matrix A
* This is the (2,1)-th entry of A?




Example: DNA Sequencing
* State Space Q) = {A,C,G,T’}

A
A 0.359
C 0.384
G 0.306
T 0.284

C G T
0.143 0.167 0.331
0.156 0.023  0.437
0.199 0.150 0.345
0.182 0.177 0.357

* Question 2: What’s the probability of X; = A given X; = C?
* Question 3: What's the probability of X5 = A?

* Answer 2: The state transition is C = x, — A for all possible x, € Q.

A 0.25
c 0.25
G 0.25
T 0.25

P(X; =AlX; =C) = szeg P(X3 = Al X, = x3) - P(X, = x5 | Xy =C)

* Answer 3: The state transition is x; = x, — A for all possible x{, x, € (1:

P(X3 =A) = leeﬂ P(X; = Al X1 =x1) - P(X; = x7)

T

Question 2

T

Initial Probability




Generalizing the DNA Sequencing Example

e State Space () = {1, e K} TrC:;msition I\/IgtrixA and initial probability distribution 7 :
11 - ik
* (A°%);;: the (i, j)-th entry of A° A= az;l af;K € RIK, 1= [y, ..., mg] € R¥K

* (A°).j: the j-th column of A°
* (+)j: the j-th entry of a vector

e Claim 1: ]P)(Xt+5 _] |Xt l) — (AS)U (VS) L, ll])
* Claim 2: P(X541 = J) = (A%); (Vs,j)

e Proof of Claim 2:

P(Xs41 =J) = z P(Xs11 =Jjl X1 =0 -PXy = 1) = E(As)ij "= ﬂ(AS);j — (T[AS)j

1EQ) T 1EQ)

* Proof of Claim 1: By induction (next page) .
Claim 1




Proof of Claim 1

e State Space () = {]_, e K} TrC:;\nsition MgtrixA and initial probability distribution 7 :
11 - ik
* (A°%);j: the (i,j)-th entry of A° A= az;l af;K € RIK, 1= [y, ..., mg] € R¥K

* (A4°%).;: the j-th column of A°
* (+);: the j-th entry of a vector

*ClaimL: P(Xeys =j | X =1) =

* Proof of Claim 1 (Induction):
* Vs, t, it is easy to prove shift invariance: IP)(XHS =j|X;=10)=PX4s=j| Xy =1)
* Next we prove P(X1,; = j | X; = i) = Aj; by induction on s:

* The base case s = 1 follows from the definition of 4
* Suppose we have P(X; = j | X; = i) = A{; " then:

PXi4s =j 1 X =1) = Z PXsy1 =Jj| Xs=k) - PXs=k| X, =1) = z agj - (A D = (A%
keq keq



Limiting Behavior of Markov Chains

* We have just proved
P(Xt4s =J | Xe = 1) = (A%)y5 (Vs,t,i,j)
P(Xs41 =J) = (mA%); (Vs, )

* Our next goal is to understand the limits lim A%, limwA°.

S— 00 S—00

* The two limits are related to the eigenvalues of A:
* Assume A is diagonalizable and write A = UAU™! with eigenvalues A = diag(44, ..., Ax)
* The diagonalizability assumption is not necessary but to simplify the exposition...
 Then we have

limAS = U (limAS) U1 limAS = U (limAS) U1

S—00 S—00 S—> 00 S— 00

* Hence, a necessary condition for the limits to exist is that |A;| < 1 for all k.



Eigenvalues of Transition Matrix "

* Proposition. Let A4, ..., Ax be eigenvalues of A. Then

max |[A.]| = 1.
k=1,...,K| d

* Proof. We first show |1, | < 1. Let (4, u) be an eigen-pair with Au = Au, ||ul|, =
1and u = [uy,...,ug]". Let i be the index such that |u;| is maximized, i.e.,
[ = argmax; |u;].

Then Au = Au implies ). ; a;;u; = Au;, which furthermore gives
< 220 < N1 1] < S ay | = =1
= U, = . aij u; = . aij — . aij— .
J DR J
1 1

1 1

Finally, A always has an eigenvalue 1: A

11 L1



|A,.| < 1is not sufficient for convergence

* Intuition:

e Assume A is diagonalizable and write A = UAU ™1 with eigenvalues A = diag(14, ..., 1)
* The diagonalizability assumption is not necessary but to simplify the exposition...

 Then lim4° = U (limA*) U~ = U (diag(lim/ls, lim/li)) U1

S—00 S—00 S—00 S—>00

* And lim 4}, ..

S—00

* isequalto 0if |4, <1
* isequaltolifd, =1
* does not existif A, = —1

* 1, can even be a complex eigenvalue with |4;| = 1



Lesson

* Existence. In order for lim 4°, limmA> to exist, we need to make assumptions

S—>C0 S—>C0
such that:
* A has no eigenvalues of magnitude 1 other than 1 itself.

* Uniqueness. In order for limmA® to be the same for different initial distribution

S—00

T, we need to make assumptions such that:
e 1isthe eigenvalue of A of geometric/algebraic multiplicity 1

* The assumptions should be “interpretable” in terms of Markov chains or states
* e.g., assuming A to be diagonalizable is not interpretable



Irreducibility and Strongly Connected Graph

* Definition. A directed graph is called strongly connected if there is a path in each
direction between each pair of vertices of the graph.

* Definition. A transition matrix A is called irreducible if every state can be reached
from any other state, i.e., for any i, j, there is some t such that

P(X, =j|X, =i) > 0.

* Remark. Each state can be denoted by a vertex and, if a;; > 0 then we add a

directed edge from vertex i to vertex j. This way, we obtain a directed graph. We
can see that A is irreducible if and only if the graph is strongly connected



Limiting Behavior of Markov Chains

* Theorem. Assume A is irreducible, then there is some v = [v4, ..., V¢ ] such that

* For any initial distribution m we have:

T+ A+ AT | [+A+-+ A1
lim = ev, lim =V
S— 00 S S— 00 S
* If furthermore there is some a;; > 0, then for any initial distribution = we have
limA° = ev, lim TA° = v
S—> 00 S—> 00

* Remark. In the latter case, v is called the stationary distribution as it is the
unique vector that satisfies:

UAZU, Ui>O(Vi), ZUL-=1
i
* Remark on Proof. This result is related to Perron—Frobenius Theory (Google
search it). For its proof, see Chapter 7 (Perron—Frobenius Theory) of “Matrix
Analysis and Applied Linear Algebra”, Second Edition (Carl D. Meyer, 2023).



Example

1 0] Note that a;; = a,, =0

'LetA=[2 é]andv=[0.5,0.5]and1=[0 nt

* A has two eigenvalues, 1 and —1.

* We have 4%t =] and A%t*1 = [(1) (1)] for any t, so lim A° does not exist.

S—0C0

* We have v4 = [0.5,0.5] (1) é = [0.5,0.5] = v, so limvA4° = [0.5,0.5]. However, for any
S—>00
initial distribution 7 different from v, lim mtA° does not exist.
S—>00
I+A 0.5 0.5 I+A
On the other hand, we have ( ) [0 _— 5] = —, which implies

im (“44) =252 =[N os.051=[!]x

S—C0 2



Estimate Transition Parameters 8 from Data

 We have derived some results based on the transition matrix ...

* In practice, we are given data samples rather than the transition matrix

* We will assume the data are sampled from a Markov chain, and then compute
the transition matrix from data via maximum likelihood estimation (MLE)



MLE of Markov Chains

* Assume we have N i.i.d. samples {x(")}

* X := (X1, ..., XT)

each x; has K status

N I
__, from distribution py (x)

* 0 = (4, m): unknown transition matrix and initial probability distribution

* MLE:

Similar to
estimating
Ay, so left as
an exercise

!

N
(/IML; TyL) = argmaxy l_[ Pax (x(n))

n=1

Markov Property
V

(AML: TyL) = argmaxy 1_[ Pr

\l, Variables are separable l,

A n 2
Ty, = argmax,; ‘ ‘ D (xi )) Our focus next p—> AML — argmaXAl
n=1 n




Simplifying The MLE : T ®)

Ay = argmaxAl ll lpA (x,fn) | X;_1
n=1 t=

« I(-): indicator function

2
* Njj: the number of samples with transitions from state i to state J, i.e.,

N;j = N1 Xie (()_]'xt()l l)

Then we have:

I(x™=i ™ _;
1. pA(xt(n) |xt(71)1)= 11_[ 1(al]) ( ‘ e )
()_. (n) _
2. H 1Ht sz( ) |X£7_1)1) 1H 21_[ 1(“11) (xt )% l)
i1 (aij) Y
This gives:

AML — argmaxy Hi:l Hj:l (aij) ?




Simplitying The MLE

¢ Nij:

A K K Nji
Ay = argmaxy Hi=1 Hj:l (aij) J

the number of samples with transitions from state i to state j

Taking logarithm and adding constraints Zj a;j = 1:

K K

Ay = argmaxAzz Nijloga;;  subjectto z a;; =1 (Vi)

K

i=1j=1 j=1
l Variables are separable

Solve the following foreveryi =1, ..., K:

o~ . K : K .

aij,, = argmaxg,; 2.j=1 Nijloga;; subject to j=1aij =1
Remark: We have seen how to solve Ni ; Remark: The optimal transition matrix can be
it using Lagrangian multipliers (recall aijML = oK found by simply counting and classifying the
EM for Gaussian Mixture Models) j=1 Ni ' number of the transitions of the sample states!




Conclusion

* Markov chains have several applications

* For irreducible transition matrix with at least one positive entry, the Markov chain
will eventually a stationary distribution

 The transition matrix can be learned from data via maximum likelihood
estimation
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