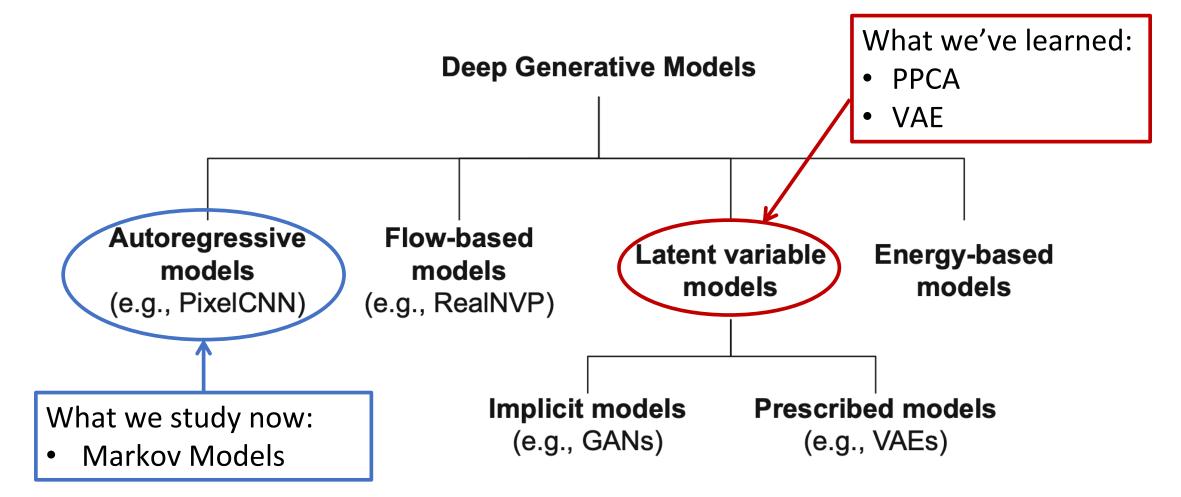
Deep Generative Models: Markov Models

Fall Semester 2024

René Vidal

Director of the Center for Innovation in Data Engineering and Science (IDEAS), Step Rachleff University Professor, University of Pennsylvania Amazon Scholar & Chief Scientist at NORCE

Taxonomy of Generative Models



Lecture Outline

- Stochastic Processes
 - Definition and Examples
- Markov Models and Markov Chains
 - Definition
 - Transition Probability and Transition Matrix
 - Examples
 - Stationarity and Convergence
- Maximum Log-Likelihood for Markov Chains

Stochastic Process

- Definition: A *stochastic process* refers to a sequence of random variables $(X_1, X_2, ..., X_T)$
- Each X_t takes values from the same sample space Ω (state space)
 - You can assume X_t has K states and $\Omega \coloneqq \{1, \dots, K\}$
- Example (Bernoulli Process):

$$X_t \sim \text{Bernouli}(p), \quad t = 1, \dots, T$$

• How many states does X_t has? What is Ω ?

Markov Property Revisited

- Issue: Modeling the joint distribution $\mathbb{P}(X_1, X_2, \dots, X_T)$ might require exponentially many parameters in the absence of any assumptions on P
- Conditional Independence Assumption (Markov property):

future	independent	past	given	present
X_{i+1}	\bot	$X_1,, X_{i-1}$	I	X _i

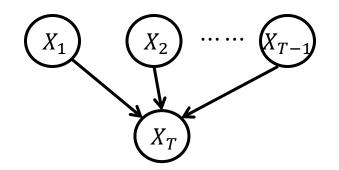
• Consequence: We now only need linearly many parameters: $\mathbb{P}(x_1, \dots, x_T) = \mathbb{P}(x_1) \mathbb{P}(x_2 \mid x_1) \mathbb{P}(x_3 \mid x_1, x_2) \cdots \mathbb{P}(x_T \mid x_1, \cdots, x_{T-1})$ $= \mathbb{P}(x_1) p(x_2 \mid x_1) \mathbb{P}(x_3 \mid x_2) \cdots \mathbb{P}(x_T \mid x_{T-1})$

Markov Chains

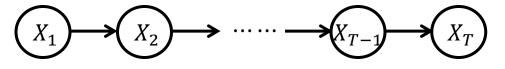
• Definition: A (discrete time) Markov chain is a stochastic process $(X_1, X_2, ..., X_T)$ with the Markov property

$$\mathbb{P}(x_1, \dots, x_T) = \mathbb{P}(x_1) \mathbb{P}(x_2 \mid x_1) \mathbb{P}(x_3 \mid x_2) \cdots \mathbb{P}(x_T \mid x_{T-1})$$

• Without Markov Property:



• With Markov Property:



Parameters of Markov Chains

- Initial Probability π_1, \ldots, π_K : $\pi_i \coloneqq \mathbb{P}(X_1 = i)$.
- Transition Probability a_{ij} :

$$a_{ij} \coloneqq \mathbb{P}(X_{t+1} = j \mid X_t = i) \qquad \forall i, j \in \Omega = \{1, \dots, K\}$$

- This is the probability that X_t transitions from state i to state j
- Matrix and Vector Notations:

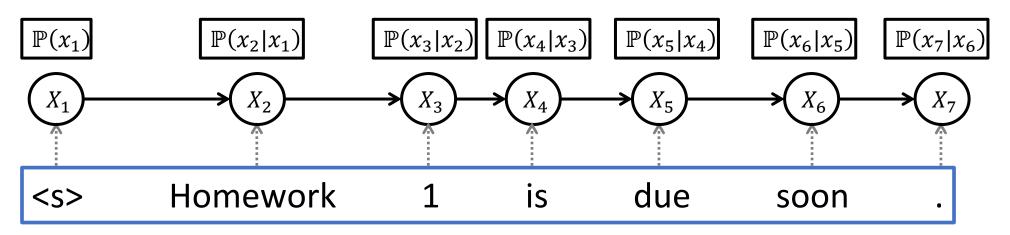
$$A := \begin{bmatrix} a_{11} & \dots & a_{1K} \\ \vdots & \ddots & \vdots \\ a_{K1} & \dots & a_{KK} \end{bmatrix} \in \mathbb{R}^{K \times K}, \qquad \pi \coloneqq [\pi_1, \dots, \pi_K] \in \mathbb{R}^{1 \times K}$$

Row Vector

A Markov chain is fully specified by its parameters $\theta := (\pi, A)$

Example: Markov Sentence Model

- State space $\Omega = \{all \text{ possible words}\}$
 - The following are viewed as words and included in the state space
 - <s>: the start of the sentence
 - Digits
 - Punctuations
- Each sentence is a Markov chain where the words are random variables:



• Meaning of $\mathbb{P}(x_{t+1}|x_t)$: Given that the current word is x_t , what is the probability that the next word is x_{t+1} ?

- Example: DNA Sequencing
- State Space $\Omega = \{\mathcal{A}, \mathcal{C}, \mathcal{G}, \mathcal{T}\}$
- Transition Matrix A:

Initial Probability Vector π :

	${\mathcal A}$	${\mathcal C}$	G	${\mathcal T}$
A	0.359	0.143	0.167	0.331
${\mathcal C}$	0.384	0.156	0.023	0.437
G	0.306	0.199	0.150	0.345
${\mathcal T}$	0.284	0.182	0.177	0.357

- Question 1: Given C, what is the probability of getting DNA sequence CTGAC?
- Answer 1:

$$\mathbb{P}(\mathcal{CTGAC}|X_1 = \mathcal{C}) = \mathbb{P}(\mathcal{C}|\mathcal{T}) \cdot \mathbb{P}(\mathcal{T}|\mathcal{G}) \cdot \mathbb{P}(\mathcal{G}|\mathcal{A}) \cdot \mathbb{P}(\mathcal{A}|\mathcal{C}) \approx 0.00403$$

$$0.182 \quad 0.345 \quad 0.167 \quad 0.384$$

Example: DNA Sequencing

• State Space $\Omega = \{\mathcal{A}, \mathcal{C}, \mathcal{G}, \mathcal{T}\}$

	${\mathcal A}$	${\mathcal C}$	G	${\mathcal T}$	
${\mathcal A}$	0.359	0.143	0.167	0.331	\mathcal{A} 0.25
${\mathcal C}$	0.384	0.156	0.023	0.437	\mathcal{C} 0.25
G	0.306	0.199	0.150	0.345	\mathcal{G} 0.25
\mathcal{T}	0.284	0.182	0.177	0.357	\mathcal{T} 0.25

- Question 2: What's the probability of $X_3 = \mathcal{A}$ given $X_1 = \mathcal{C}$?
- Question 3: What's the probability of $X_3 = A$?

Example: DNA Sequencing

• State Space $\Omega = \{\mathcal{A}, \mathcal{C}, \mathcal{G}, \mathcal{T}\}$

	${\mathcal A}$	${\mathcal C}$	G	${\mathcal T}$		4	0.05
\mathcal{A}	0.359	0.143	0.167	0.331	C	4	0.25
			0.023		()	0.25
-			0.150		<u>(</u>	ì	0.25
U					1	-	0.25
J^{*}	0.284	0.182	0.177	0.357	0		0.20

- Question 2: What's the probability of $X_3 = \mathcal{A}$ given $X_1 = \mathcal{C}$?
- Question 3: What's the probability of $X_3 = A$?
- Answer 2: The state transition is $\mathcal{C} \to x_2 \to \mathcal{A}$ for all possible $x_2 \in \Omega$:

$$\mathbb{P}(X_3 = \mathcal{A} | X_1 = \mathcal{C}) = \sum_{x_2 \in \Omega} \mathbb{P}(X_3 = \mathcal{A} | X_2 = x_2) \cdot \mathbb{P}(X_2 = x_2 | X_1 = \mathcal{C})$$
$$= \begin{bmatrix} 0.384, 0.156, 0.023, 0.437 \end{bmatrix} \begin{bmatrix} 0.359 \\ 0.384 \\ 0.306 \\ 0.284 \end{bmatrix}$$

- This is the inner product of the second row and first column of the transition matrix A
- This is the (2,1)-th entry of A^2

Example: DNA Sequencing

• State Space $\Omega = \{\mathcal{A}, \mathcal{C}, \mathcal{G}, \mathcal{T}\}$

	${\mathcal A}$	${\mathcal C}$	G	${\mathcal T}$		
${\mathcal A}$	0.359	0.143	0.167	0.331	${\mathcal A}$	0.25
${\mathcal C}$	0.384	0.156	0.023	0.437	${\mathcal C}$	0.25
G	0.306	0.199	0.150	0.345	${\mathcal G}$	0.25
\mathcal{T}	0.284	0.182	0.177	0.357	${\mathcal T}$	0.25

- Question 2: What's the probability of $X_3 = \mathcal{A}$ given $X_1 = \mathcal{C}$?
- Question 3: What's the probability of $X_3 = A$?
- Answer 2: The state transition is $\mathcal{C} \to x_2 \to \mathcal{A}$ for all possible $x_2 \in \Omega$:

$$\mathbb{P}(X_3 = \mathcal{A} | X_1 = \mathcal{C}) = \sum_{x_2 \in \Omega} \mathbb{P}(X_3 = \mathcal{A} | X_2 = x_2) \cdot \mathbb{P}(X_2 = x_2 | X_1 = \mathcal{C})$$

• Answer 3: The state transition is $x_1 \rightarrow x_2 \rightarrow \mathcal{A}$ for all possible $x_1, x_2 \in \Omega$:

$$\mathbb{P}(X_3 = \mathcal{A}) = \sum_{x_1 \in \Omega} \mathbb{P}(X_3 = \mathcal{A} \mid X_1 = x_1) \cdot \mathbb{P}(X_1 = x_1)$$
Question 2
Initial Probability

Generalizing the DNA Sequencing Example

- State Space $\Omega = \{1, \dots, K\}$
- $(A^s)_{ij}$: the (i, j)-th entry of A^s
- $(A^s)_{:j}$: the *j*-th column of A^s
- $(\cdot)_j$: the *j*-th entry of a vector

Transition Matrix *A* and initial probability distribution
$$\pi$$
:

$$A := \begin{bmatrix} a_{11} & \dots & a_{1K} \\ \vdots & \ddots & \vdots \\ a_{K1} & \dots & a_{KK} \end{bmatrix} \in \mathbb{R}^{K \times K}, \qquad \pi \coloneqq [\pi_1, \dots, \pi_K] \in \mathbb{R}^{1 \times K}$$

- Claim 1: $\mathbb{P}(X_{t+s} = j | X_t = i) = (A^s)_{ij}$ $(\forall s, t, i, j)$
- Claim 2: $\mathbb{P}(X_{s+1} = j) = (\pi A^s)_j$ $(\forall s, j)$
- Proof of Claim 2:

$$\mathbb{P}(X_{s+1} = j) = \sum_{i \in \Omega} \mathbb{P}(X_{s+1} = j | X_1 = i) \cdot \mathbb{P}(X_1 = i) = \sum_{i \in \Omega} (A^s)_{ij} \cdot \pi_i = \pi(A^s)_{:j} = (\pi A^s)_j$$

Proof of Claim 1: By induction (next page)

Proof of Claim 1

- State Space $\Omega = \{1, \dots, K\}$
- $(A^s)_{ij}$: the (i, j)-th entry of A^s
- $(A^s)_{:j}$: the *j*-th column of A^s
- $(\cdot)_j$: the *j*-th entry of a vector

Transition Matrix *A* and initial probability distribution π : $A := \begin{bmatrix} a_{11} & \dots & a_{1K} \\ \vdots & \ddots & \vdots \\ a_{K1} & \cdots & a_{KK} \end{bmatrix} \in \mathbb{R}^{K \times K}, \qquad \pi \coloneqq [\pi_1, \dots, \pi_K] \in \mathbb{R}^{1 \times K}$

- Claim 1: $\mathbb{P}(X_{t+s} = j | X_t = i) = A_{ij}^s$
- Proof of Claim 1 (Induction):
 - $\forall s, t$, it is easy to prove shift invariance: $\mathbb{P}(X_{t+s} = j \mid X_t = i) = \mathbb{P}(X_{1+s} = j \mid X_1 = i)$
 - Next we prove $\mathbb{P}(X_{1+s} = j \mid X_1 = i) = A_{ij}^s$ by induction on s:
 - The base case s = 1 follows from the definition of A
 - Suppose we have $\mathbb{P}(X_s = j \mid X_1 = i) = A_{ij}^{s-1}$ then:

$$\mathbb{P}(X_{1+s} = j \mid X_1 = i) = \sum_{k \in \Omega} \mathbb{P}(X_{s+1} = j \mid X_s = k) \cdot \mathbb{P}(X_s = k \mid X_1 = i) = \sum_{k \in \Omega} a_{kj} \cdot (A^{s-1})_{ik} = (A^s)_{ij}$$

Limiting Behavior of Markov Chains

• We have just proved

$$\mathbb{P}(X_{t+s} = j \mid X_t = i) = (A^s)_{ij} \qquad (\forall s, t, i, j)$$
$$\mathbb{P}(X_{s+1} = j) = (\pi A^s)_j \qquad (\forall s, j)$$

- Our next goal is to understand the limits $\lim_{s\to\infty} A^s$, $\lim_{s\to\infty} \pi A^s$.
- The two limits are related to the eigenvalues of *A*:
 - Assume A is diagonalizable and write $A = U\Lambda U^{-1}$ with eigenvalues $\Lambda = \text{diag}(\lambda_1, \dots, \lambda_K)$
 - The diagonalizability assumption is not necessary but to simplify the exposition...
 - Then we have

$$\lim_{s \to \infty} A^s = U\left(\lim_{s \to \infty} \Lambda^s\right) U^{-1}, \qquad \lim_{s \to \infty} \pi A^s = \pi U\left(\lim_{s \to \infty} \Lambda^s\right) U^{-1}$$

• Hence, a necessary condition for the limits to exist is that $|\lambda_k| \leq 1$ for all k.

Eigenvalues of Transition Matrix

$$A := \begin{bmatrix} a_{11} & \dots & a_{1K} \\ \vdots & \ddots & \vdots \\ a_{K1} & \cdots & a_{KK} \end{bmatrix} \in \mathbb{R}^{K \times K}$$

• Proposition. Let $\lambda_1, \ldots, \lambda_K$ be eigenvalues of A. Then

$$\max_{k=1,\ldots,K} |\lambda_k| = 1.$$

• Proof. We first show $|\lambda_k| \leq 1$. Let (λ, u) be an eigen-pair with $Au = \lambda u$, $||u||_2 = 1$ and $u = [u_1, ..., u_K]^\top$. Let *i* be the index such that $|u_i|$ is maximized, i.e., $i = \operatorname{argmax}_j |u_j|$.

Then $Au = \lambda u$ implies $\sum_{j} a_{ij} u_j = \lambda u_i$, which furthermore gives $|\lambda| \le \left| \frac{\sum_{j} a_{ij} u_j}{u_i} \right| \le \sum_{j} |a_{ij}| \cdot \left| \frac{u_j}{u_i} \right| \le \sum_{j} |a_{ij}| = \sum_{j} a_{ij} = 1.$ Finally, A always has an eigenvalue 1: $A \begin{bmatrix} 1\\1\\\vdots\\1 \end{bmatrix} = \begin{bmatrix} 1\\1\\\vdots\\1 \end{bmatrix}$

$|\lambda_k| \leq 1$ is not sufficient for convergence

• Intuition:

- Assume A is diagonalizable and write $A = U\Lambda U^{-1}$ with eigenvalues $\Lambda = \text{diag}(\lambda_1, \dots, \lambda_K)$
 - The diagonalizability assumption is not necessary but to simplify the exposition...

• Then
$$\lim_{s \to \infty} A^s = U\left(\lim_{s \to \infty} \Lambda^s\right) U^{-1} = U\left(\operatorname{diag}\left(\lim_{s \to \infty} \lambda_1^s, \dots, \lim_{s \to \infty} \lambda_K^s\right)\right) U^{-1}$$

- And $\lim_{s\to\infty}\lambda_k^s$...
 - is equal to 0 if $|\lambda_k| < 1$
 - is equal to 1 if $\lambda_k = 1$
 - does not exist if $\lambda_k = -1$
- λ_k can even be a complex eigenvalue with $|\lambda_k| = 1$

Lesson

- Existence. In order for $\lim_{s\to\infty} A^s$, $\lim_{s\to\infty} \pi A^s$ to exist, we need to make assumptions such that:
 - *A* has no eigenvalues of magnitude 1 other than 1 itself.
- Uniqueness. In order for $\lim_{s\to\infty} \pi A^s$ to be the same for different initial distribution π , we need to make assumptions such that:
 - 1 is the eigenvalue of A of geometric/algebraic multiplicity 1

- The assumptions should be "interpretable" in terms of Markov chains or states
 - e.g., assuming A to be diagonalizable is not interpretable

Irreducibility and Strongly Connected Graph

- Definition. A directed graph is called *strongly connected* if there is a path in each direction between each pair of vertices of the graph.
- Definition. A transition matrix A is called *irreducible* if every state can be reached from any other state, i.e., for any i, j, there is some t such that $\mathbb{P}(X_t = j \mid X_1 = i) > 0.$

 Remark. Each state can be denoted by a vertex and, if a_{ij} > 0 then we add a directed edge from vertex *i* to vertex *j*. This way, we obtain a directed graph. We can see that *A* is irreducible if and only if the graph is strongly connected

Limiting Behavior of Markov Chains

- Theorem. Assume A is irreducible, then there is some $v = [v_1, ..., v_K]$ such that
 - For any initial distribution π we have: $I + A + \dots + A^{s-1}$

 $S \rightarrow \infty$

$$\frac{\cdot + A^{s-1}}{\ldots} = ev, \qquad \lim_{s \to \infty} \pi \left(\frac{I + A + \dots + A^{s-1}}{s} \right) = v$$

$$e \coloneqq \begin{bmatrix} 1 \\ 1 \\ \vdots \\ 1 \end{bmatrix}$$

• If furthermore there is some $a_{ii} > 0$, then for any initial distribution π we have

$$\lim_{s \to \infty} A^s = ev, \qquad \qquad \lim_{s \to \infty} \pi A^s = v$$

• Remark. In the latter case, v is called the stationary distribution as it is the unique vector that satisfies:

$$vA = v,$$
 $v_i > 0 (\forall i),$ $\sum_i v_i = 1$

• Remark on Proof. This result is related to Perron–Frobenius Theory (Google search it). For its proof, see Chapter 7 (Perron–Frobenius Theory) of "Matrix Analysis and Applied Linear Algebra", Second Edition (Carl D. Meyer, 2023).

Example

• Let
$$A = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$$
 and $v = \begin{bmatrix} 0.5, 0.5 \end{bmatrix}$ and $I = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$. Note that $a_{11} = a_{22} = 0$

- A has two eigenvalues, 1 and -1.
- We have $A^{2t} = I$ and $A^{2t+1} = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$ for any t, so $\lim_{s \to \infty} A^s$ does not exist.
- We have $vA = \begin{bmatrix} 0.5, 0.5 \end{bmatrix} \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} = \begin{bmatrix} 0.5, 0.5 \end{bmatrix} = v$, so $\lim_{s \to \infty} vA^s = \begin{bmatrix} 0.5, 0.5 \end{bmatrix}$. However, for any initial distribution π different from v, $\lim_{s \to \infty} \pi A^s$ does not exist.
- On the other hand, we have $\left(\frac{I+A}{2}\right)^2 = \begin{bmatrix} 0.5 & 0.5\\ 0.5 & 0.5 \end{bmatrix} = \frac{I+A}{2}$, which implies

$$\lim_{s \to \infty} \left(\frac{I+A}{2} \right)^s = \frac{I+A}{2} = \begin{bmatrix} 1\\1 \end{bmatrix} [0.5, 0.5] = \begin{bmatrix} 1\\1 \end{bmatrix} \pi$$

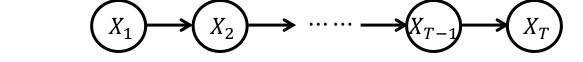
Estimate Transition Parameters θ from Data

• We have derived some results based on the transition matrix ...

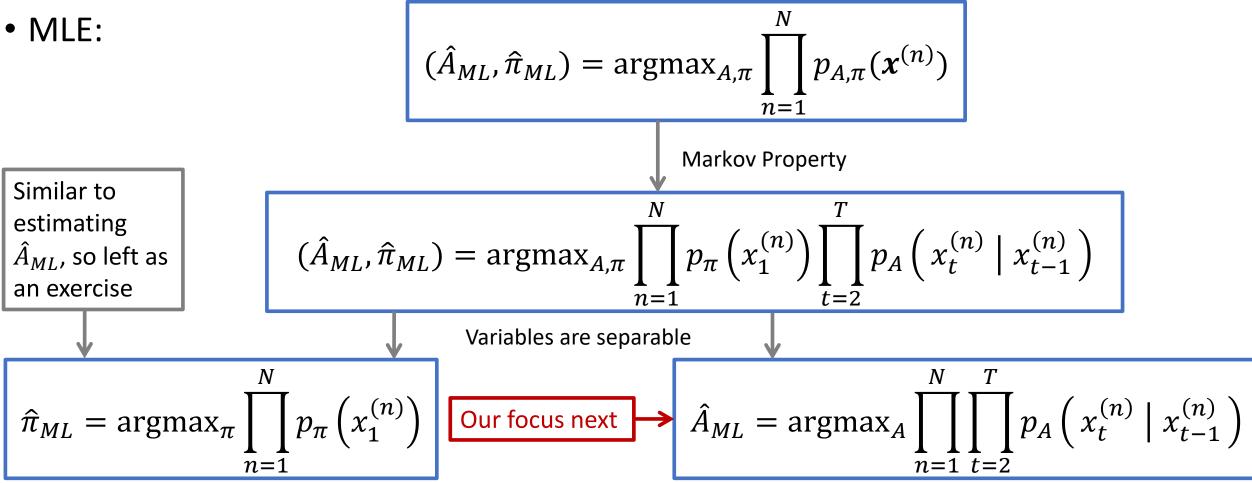
• In practice, we are given data samples rather than the transition matrix

• We will assume the data are sampled from a Markov chain, and then compute the transition matrix from data via **maximum likelihood estimation (MLE)**

MLE of Markov Chains



- Assume we have N i.i.d. samples $\{x^{(n)}\}_{n=1}^{N}$ from distribution $p_{\theta}(x)$
 - $\mathbf{x} \coloneqq (x_1, \dots, x_T)$ each x_t has K status
 - $\theta = (A, \pi)$: unknown transition matrix and initial probability distribution



- Simplifying The MLE
- $\mathbb{I}(\cdot)$: indicator function

$$\hat{A}_{ML} = \operatorname{argmax}_{A} \prod_{n=1}^{N} \prod_{t=2}^{T} p_{A} \left(x_{t}^{(n)} \mid x_{t-1}^{(n)} \right)$$

• N_{ij} : the number of samples with transitions from state *i* to state *j*, i.e.,

$$N_{ij} \coloneqq \sum_{n=1}^{N} \sum_{t=2}^{T} \mathbb{I} \left(x_t^{(n)} = j, x_{t-1}^{(n)} = i \right)$$

Then we have:

1.
$$p_A \left(x_t^{(n)} \mid x_{t-1}^{(n)} \right) = \prod_{i=1}^K \prod_{j=1}^K (a_{ij})^{\mathbb{I} \left(x_t^{(n)} = j, x_{t-1}^{(n)} = i \right)}$$

2. $\prod_{n=1}^N \prod_{t=2}^T p_A \left(x_t^{(n)} \mid x_{t-1}^{(n)} \right) = \prod_{n=1}^N \prod_{t=2}^T \prod_{i=1}^K \prod_{j=1}^K (a_{ij})^{\mathbb{I} \left(x_t^{(n)} = j, x_{t-1}^{(n)} = i \right)}$
 $= \prod_{i=1}^K \prod_{j=1}^K (a_{ij})^{N_{ij}}$

This gives:

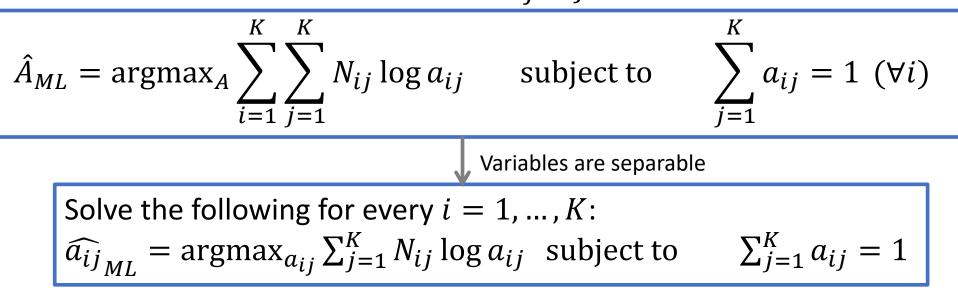
$$\hat{A}_{ML} = \operatorname{argmax}_{A} \prod_{i=1}^{K} \prod_{j=1}^{K} (a_{ij})^{N_{ij}}$$

Simplifying The MLE

$$\hat{A}_{ML} = \operatorname{argmax}_{A} \prod_{i=1}^{K} \prod_{j=1}^{K} (a_{ij})^{N_{ij}}$$

• N_{ij} : the number of samples with transitions from state *i* to state *j*

Taking logarithm and adding constraints $\sum_{j} a_{ij} = 1$:



Remark: We have seen how to solve it using Lagrangian multipliers (recall *EM for Gaussian Mixture Models*)

$$\widehat{a_{ij}}_{ML} = \frac{N_{ij}}{\sum_{j=1}^{K} N_{ij}}$$

Remark: The optimal transition matrix can be found by simply counting and classifying the number of the transitions of the sample states!

Conclusion

- Markov chains have several applications
- For irreducible transition matrix with at least one positive entry, the Markov chain will eventually a stationary distribution

The transition matrix can be learned from data via maximum likelihood estimation