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Taxonomy of Generative Models
What we’ve learned:
• PPCA
• VAE

What we study now:
• Markov Models



• Stochastic Processes
• Definition and Examples

• Markov Models and Markov Chains
• Definition

• Transition Probability and Transition Matrix

• Examples

• Stationarity and Convergence

• Maximum Log-Likelihood for Markov Chains

Lecture Outline



• Definition: A stochastic process refers to a sequence of random variables 
(𝑋1, 𝑋2, … , 𝑋𝑇)

• Each 𝑋𝑡 takes values from the same sample space Ω (state space)
• You can assume 𝑋𝑡 has 𝐾 states and Ω ≔ {1, … , 𝐾}

• Example (Bernoulli Process):

𝑋𝑡 ∼ Bernouli 𝑝 ,  𝑡 = 1, … , 𝑇

• How many states does 𝑋𝑡 has? What is Ω?

Stochastic Process



• Issue: Modeling the joint distribution ℙ(𝑋1, 𝑋2, … , 𝑋𝑇) might require 
exponentially many parameters in the absence of any assumptions on 𝑃

• Conditional Independence Assumption (Markov property):

• Consequence: We now only need linearly many parameters:
ℙ 𝑥1, … , 𝑥𝑇  = ℙ 𝑥1 ℙ 𝑥2 ∣ 𝑥1 ℙ 𝑥3 ∣ 𝑥1, 𝑥2 ⋯ ℙ 𝑥𝑇 ∣ 𝑥1, ⋯ , 𝑥𝑇−1

= ℙ 𝑥1 𝑝 𝑥2 ∣ 𝑥1 ℙ 𝑥3 ∣ 𝑥2 ⋯ ℙ 𝑥𝑇 ∣ 𝑥𝑇−1

Markov Property Revisited

future independent past given present

𝑋𝑖+1  ⊥  𝑋1, … , 𝑋𝑖−1  ∣  𝑋𝑖



• Definition: A (discrete time) Markov chain is a stochastic process (𝑋1, 𝑋2, … , 𝑋𝑇) 
with the Markov property

ℙ 𝑥1, … , 𝑥𝑇 = ℙ 𝑥1 ℙ 𝑥2 ∣ 𝑥1 ℙ 𝑥3 ∣ 𝑥2 ⋯ ℙ 𝑥𝑇 ∣ 𝑥𝑇−1

• Without Markov Property:

• With Markov Property:

Markov Chains

𝑋1 𝑋2 𝑋𝑇−1⋯ ⋯ 𝑋𝑇

𝑋1 𝑋2 𝑋𝑇−1⋯ ⋯

𝑋𝑇



• Initial Probability 𝜋1, … , 𝜋𝐾:    𝜋𝑖 ≔ ℙ(𝑋1 = 𝑖).

• Transition Probability 𝑎𝑖𝑗: 

𝑎𝑖𝑗 ≔ ℙ 𝑋𝑡+1 = 𝑗 | 𝑋𝑡 = 𝑖  ∀𝑖, 𝑗 ∈ Ω = {1, … , 𝐾}

• This is the probability that 𝑋𝑡 transitions from state 𝑖 to state 𝑗

• Matrix and Vector Notations:

𝐴: =

𝑎11 … 𝑎1𝐾

⋮ ⋱ ⋮
𝑎𝐾1 ⋯ 𝑎𝐾𝐾

∈ ℝ𝐾×𝐾 ,  𝜋 ≔ 𝜋1, … , 𝜋𝐾 ∈ ℝ1×𝐾

Parameters of Markov Chains

A Markov chain is fully specified by its parameters 𝜃: = (𝜋, 𝐴)

Row Vector



• State space Ω = all possible words
• The following are viewed as words and included in the state space

• <s>: the start of the sentence

• Digits

• Punctuations

• Each sentence is a Markov chain where the words are random variables:

• Meaning of ℙ 𝑥𝑡+1|𝑥𝑡 : Given that the current word is 𝑥𝑡, what is the probability 
that the next word is 𝑥𝑡+1?

Example: Markov Sentence Model

<s>          Homework          1          is          due          soon          .

𝑋1 𝑋2 𝑋3 𝑋4 𝑋6𝑋5 𝑋7

ℙ 𝑥1 ℙ 𝑥2|𝑥1 ℙ 𝑥3|𝑥2 ℙ 𝑥4|𝑥3 ℙ 𝑥5|𝑥4 ℙ 𝑥6|𝑥5 ℙ 𝑥7|𝑥6



Example: DNA Sequencing
• State Space Ω = {𝒜, 𝒞, 𝒢, 𝒯}

• Transition Matrix 𝐴:                                          Initial Probability Vector 𝜋:

• Question 1: Given 𝒞, what is the probability of getting DNA sequence 𝒞𝒯𝒢𝒜𝒞?

• Answer 1:

ℙ 𝒞𝒯𝒢𝒜𝒞 𝑋1 = 𝒞 = ℙ(𝒞|𝒯) ⋅ ℙ(𝒯|𝒢) ⋅ ℙ(𝒢|𝒜) ⋅ ℙ(𝒜|𝒞) ≈ 0.00403

0.182 0.345 0.167 0.384

𝒜 𝒞 𝒢 𝒯
𝒜 0.359 0.143 0.167 0.331
𝒞 0.384 0.156 0.023 0.437
𝒢 0.306 0.199 0.150 0.345
𝒯 0.284 0.182 0.177 0.357

𝒜 0.25
𝒞 0.25
𝒢 0.25
𝒯 0.25



Example: DNA Sequencing
• State Space Ω = {𝒜, 𝒞, 𝒢, 𝒯}

• Question 2: What’s the probability of 𝑋3 = 𝒜 given 𝑋1 = 𝒞?

• Question 3: What’s the probability of 𝑋3 = 𝒜?

𝒜 0.25
𝒞 0.25
𝒢 0.25
𝒯 0.25

𝒜 𝒞 𝒢 𝒯
𝒜 0.359 0.143 0.167 0.331
𝒞 0.384 0.156 0.023 0.437
𝒢 0.306 0.199 0.150 0.345
𝒯 0.284 0.182 0.177 0.357



Example: DNA Sequencing
• State Space Ω = {𝒜, 𝒞, 𝒢, 𝒯}

• Question 2: What’s the probability of 𝑋3 = 𝒜 given 𝑋1 = 𝒞?

• Question 3: What’s the probability of 𝑋3 = 𝒜?

• Answer 2: The state transition is 𝒞 → 𝑥2 → 𝒜 for all possible 𝑥2 ∈ Ω:

 ℙ 𝑋3 = 𝒜 𝑋1 = 𝒞 = σ𝑥2∈Ω ℙ 𝑋3 = 𝒜  𝑋2 = 𝑥2 ⋅ ℙ 𝑋2 = 𝑥2 𝑋1 = 𝒞

= 0.384, 0.156, 0.023,0.437

0.359
0.384
0.306
0.284

• This is the inner product of the second row and first column of the transition matrix 𝐴 

• This is the (2,1)-th entry of 𝐴2

𝒜 0.25
𝒞 0.25
𝒢 0.25
𝒯 0.25

𝒜 𝒞 𝒢 𝒯
𝒜 0.359 0.143 0.167 0.331
𝒞 0.384 0.156 0.023 0.437
𝒢 0.306 0.199 0.150 0.345
𝒯 0.284 0.182 0.177 0.357



Example: DNA Sequencing
• State Space Ω = {𝒜, 𝒞, 𝒢, 𝒯}

• Question 2: What’s the probability of 𝑋3 = 𝒜 given 𝑋1 = 𝒞?

• Question 3: What’s the probability of 𝑋3 = 𝒜?

• Answer 2: The state transition is 𝒞 → 𝑥2 → 𝒜 for all possible 𝑥2 ∈ Ω:

 ℙ 𝑋3 = 𝒜 𝑋1 = 𝒞 = σ𝑥2∈Ω ℙ 𝑋3 = 𝒜  𝑋2 = 𝑥2 ⋅ ℙ 𝑋2 = 𝑥2 𝑋1 = 𝒞

• Answer 3: The state transition is 𝑥1 → 𝑥2 → 𝒜 for all possible 𝑥1, 𝑥2 ∈ Ω:

 ℙ(𝑋3 = 𝒜) = σ𝑥1∈Ω ℙ 𝑋3 = 𝒜  𝑋1 = 𝑥1 ⋅ ℙ(𝑋1 = 𝑥1)

𝒜 0.25
𝒞 0.25
𝒢 0.25
𝒯 0.25

Question 2 Initial Probability

𝒜 𝒞 𝒢 𝒯
𝒜 0.359 0.143 0.167 0.331
𝒞 0.384 0.156 0.023 0.437
𝒢 0.306 0.199 0.150 0.345
𝒯 0.284 0.182 0.177 0.357



• State Space 𝛺 = {1, … , 𝐾}

• 𝐴𝑠
𝑖𝑗: the (𝑖, 𝑗)-th entry of 𝐴𝑠

• 𝐴𝑠
:𝑗: the 𝑗-th column of 𝐴𝑠

• ⋅ 𝑗: the 𝑗-th entry of a vector 

• Claim 1: ℙ 𝑋𝑡+𝑠 = 𝑗 𝑋𝑡 = 𝑖 = 𝐴𝑠
𝑖𝑗 ∀𝑠, 𝑡, 𝑖, 𝑗

• Claim 2: ℙ 𝑋𝑠+1 = 𝑗 = 𝜋𝐴𝑠
𝑗 ∀𝑠, 𝑗

• Proof of Claim 2:

ℙ 𝑋𝑠+1 = 𝑗 = ෍

𝑖∈Ω

ℙ 𝑋𝑠+1 = 𝑗  𝑋1 = 𝑖 ⋅ ℙ(𝑋1 = 𝑖) = ෍

𝑖∈Ω

𝐴𝑠
𝑖𝑗 ⋅ 𝜋𝑖 = 𝜋 𝐴𝑠

:𝑗 = 𝜋𝐴𝑠
𝑗

• Proof of Claim 1: By induction (next page)

Generalizing the DNA Sequencing Example
Transition Matrix 𝐴 and initial probability distribution 𝜋 :

𝐴: =

𝑎11 … 𝑎1𝐾

⋮ ⋱ ⋮
𝑎𝐾1 ⋯ 𝑎𝐾𝐾

∈ ℝ𝐾×𝐾,  𝜋 ≔ 𝜋1, … , 𝜋𝐾 ∈ ℝ1×𝐾

Claim 1 



• State Space 𝛺 = {1, … , 𝐾}

• 𝐴𝑠
𝑖𝑗: the (𝑖, 𝑗)-th entry of 𝐴𝑠

• 𝐴𝑠
:𝑗: the 𝑗-th column of 𝐴𝑠

• ⋅ 𝑗: the 𝑗-th entry of a vector

• Claim 1: ℙ 𝑋𝑡+𝑠 = 𝑗 𝑋𝑡 = 𝑖 = 𝐴𝑖𝑗
𝑠

• Proof of Claim 1 (Induction):
• ∀𝑠, 𝑡, it is easy to prove shift invariance: ℙ 𝑋𝑡+𝑠 = 𝑗 𝑋𝑡 = 𝑖 = ℙ 𝑋1+𝑠 = 𝑗 𝑋1 = 𝑖

• Next we prove ℙ 𝑋1+𝑠 = 𝑗 𝑋1 = 𝑖 = 𝐴𝑖𝑗
𝑠  by induction on 𝑠:

• The base case 𝑠 = 1 follows from the definition of 𝐴

• Suppose we have ℙ 𝑋𝑠 = 𝑗 𝑋1 = 𝑖 = 𝐴𝑖𝑗
𝑠−1 then:

ℙ 𝑋1+𝑠 = 𝑗 𝑋1 = 𝑖 = ෍

𝑘∈Ω

ℙ 𝑋𝑠+1 = 𝑗 𝑋𝑠 = 𝑘 ⋅ ℙ 𝑋𝑠 = 𝑘 𝑋1 = 𝑖) = ෍

𝑘∈Ω

𝑎𝑘𝑗 ⋅ 𝐴𝑠−1
𝑖𝑘 = 𝐴𝑠

𝑖𝑗

Proof of Claim 1
Transition Matrix 𝐴 and initial probability distribution 𝜋 :

𝐴: =

𝑎11 … 𝑎1𝐾

⋮ ⋱ ⋮
𝑎𝐾1 ⋯ 𝑎𝐾𝐾

∈ ℝ𝐾×𝐾,  𝜋 ≔ 𝜋1, … , 𝜋𝐾 ∈ ℝ1×𝐾



• We have just proved 

  ℙ 𝑋𝑡+𝑠 = 𝑗 𝑋𝑡 = 𝑖 = 𝐴𝑠
𝑖𝑗 ∀𝑠, 𝑡, 𝑖, 𝑗

  ℙ 𝑋𝑠+1 = 𝑗 = 𝜋𝐴𝑠
𝑗 ∀𝑠, 𝑗

• Our next goal is to understand the limits lim
s→∞

𝐴𝑠, lim
s→∞

𝜋𝐴𝑠.

• The two limits are related to the eigenvalues of 𝐴:
• Assume 𝐴 is diagonalizable and write 𝐴 = 𝑈ΛU−1 with eigenvalues Λ = diag 𝜆1, … , 𝜆𝐾

• The diagonalizability assumption is not necessary but to simplify the exposition…

• Then we have

lim
s→∞

𝐴𝑠 = 𝑈 lim
s→∞

Λ𝑠 𝑈−1, lim
s→∞

𝜋𝐴𝑠 = 𝜋𝑈 lim
s→∞

Λ𝑠 𝑈−1

• Hence, a necessary condition for the limits to exist is that 𝜆𝑘 ≤ 1 for all 𝑘.

Limiting Behavior of Markov Chains



• Proposition. Let 𝜆1, … , 𝜆𝐾 be eigenvalues of 𝐴. Then
max

𝑘=1,…,𝐾
|𝜆𝑘| = 1.

• Proof. We first show 𝜆𝑘 ≤ 1. Let (𝜆, 𝑢) be an eigen-pair with 𝐴𝑢 = 𝜆𝑢, | 𝑢 |2 =
1 and 𝑢 = 𝑢1, … , 𝑢𝐾

⊤. Let 𝑖 be the index such that |𝑢𝑖| is maximized, i.e., 
𝑖 = argmax𝑗  |𝑢𝑗|.

Then 𝐴𝑢 = 𝜆𝑢 implies σ𝑗 𝑎𝑖𝑗𝑢𝑗 = 𝜆𝑢𝑖, which furthermore gives 

𝜆 ≤
σ𝑗 𝑎𝑖𝑗𝑢𝑗

𝑢𝑖
≤ ෍

𝑗

𝑎𝑖𝑗 ⋅
𝑢𝑗

𝑢𝑖
≤ ෍

𝑗

𝑎𝑖𝑗 = ෍

𝑗

𝑎𝑖𝑗 = 1.

Finally, 𝐴 always has an eigenvalue 1:  𝐴

1
1
⋮
1

=

1
1
⋮
1

Eigenvalues of Transition Matrix 𝐴: =

𝑎11 … 𝑎1𝐾

⋮ ⋱ ⋮
𝑎𝐾1 ⋯ 𝑎𝐾𝐾

∈ ℝ𝐾×𝐾



• Intuition: 
• Assume 𝐴 is diagonalizable and write 𝐴 = 𝑈ΛU−1 with eigenvalues Λ = diag 𝜆1, … , 𝜆𝐾

• The diagonalizability assumption is not necessary but to simplify the exposition…

• Then lim
s→∞

𝐴𝑠 = 𝑈 lim
s→∞

Λ𝑠 𝑈−1 = 𝑈 diag lim
s→∞

𝜆1
𝑠 , … , lim

s→∞
𝜆𝐾

𝑠 𝑈−1

• And lim
s→∞

𝜆𝑘
𝑠  …

• is equal to 0 if 𝜆𝑘 < 1

• is equal to 1 if 𝜆𝑘 = 1

• does not exist if 𝜆𝑘 = −1

• 𝜆𝑘 can even be a complex eigenvalue with 𝜆𝑘 = 1

𝜆𝑘 ≤ 1 is not sufficient for convergence



• Existence. In order for lim
s→∞

𝐴𝑠, lim
s→∞

𝜋𝐴𝑠 to exist, we need to make assumptions 

such that:
• 𝐴 has no eigenvalues of magnitude 1 other than 1 itself.

• Uniqueness. In order for lim
s→∞

𝜋𝐴𝑠 to be the same for different initial distribution 

𝜋, we need to make assumptions such that:
• 1 is the eigenvalue of 𝐴 of geometric/algebraic multiplicity 1

• The assumptions should be “interpretable” in terms of Markov chains or states
• e.g., assuming 𝐴 to be diagonalizable is not interpretable

Lesson



• Definition. A directed graph is called strongly connected if there is a path in each 
direction between each pair of vertices of the graph.

• Definition. A transition matrix 𝐴 is called irreducible if every state can be reached 
from any other state, i.e., for any 𝑖, 𝑗, there is some 𝑡 such that 

ℙ 𝑋𝑡 = 𝑗 𝑋1 = 𝑖 > 0.

• Remark. Each state can be denoted by a vertex and, if 𝑎𝑖𝑗 > 0 then we add a 
directed edge from vertex 𝑖 to vertex 𝑗. This way, we obtain a directed graph. We 
can see that 𝐴 is irreducible if and only if the graph is strongly connected

Irreducibility and Strongly Connected Graph



• Theorem. Assume 𝐴 is irreducible, then there is some 𝑣 = 𝑣1, … , 𝑣𝐾  such that
• For any initial distribution 𝜋 we have:

lim
s→∞

𝐼 + 𝐴 + ⋯ + 𝐴𝑠−1

𝑠
= 𝑒𝑣,  lim

s→∞
 𝜋

𝐼 + 𝐴 + ⋯ + 𝐴𝑠−1

𝑠
= 𝑣

• If furthermore there is some 𝑎𝑖𝑖 > 0, then for any initial distribution 𝜋 we have

lim
s→∞

𝐴𝑠 = 𝑒𝑣,  lim
s→∞

 𝜋𝐴𝑠 = 𝑣

• Remark. In the latter case, 𝑣 is called the stationary distribution as it is the 
unique vector that satisfies: 

𝑣𝐴 = 𝑣,  𝑣𝑖 > 0 ∀𝑖 ,  ෍

𝑖

𝑣𝑖 = 1

• Remark on Proof. This result is related to Perron–Frobenius Theory (Google 
search it). For its proof, see Chapter 7 (Perron–Frobenius Theory) of “Matrix 
Analysis and Applied Linear Algebra”, Second Edition (Carl D. Meyer, 2023). 

Limiting Behavior of Markov Chains

𝑒 ≔

1
1
⋮
1



• Let 𝐴 =
0 1
1 0

 and 𝑣 = 0.5, 0.5  and 𝐼 =
1 0
0 1

.          Note that 𝑎11 = 𝑎22 = 0

• 𝐴 has two eigenvalues, 1 and −1.

• We have 𝐴2𝑡 = 𝐼 and 𝐴2𝑡+1 =
0 1
1 0

 for any 𝑡, so lim
s→∞

𝐴𝑠 does not exist.

• We have 𝑣𝐴 = 0.5, 0.5
0 1
1 0

= 0.5, 0.5 = 𝑣, so lim
s→∞

𝑣𝐴𝑠 = 0.5, 0.5 . However, for any 

initial distribution 𝜋 different from 𝑣, lim
s→∞

𝜋𝐴𝑠 does not exist.

• On the other hand, we have 
𝐼+𝐴

2

2
=

0.5 0.5
0.5 0.5

=
𝐼+𝐴

2
, which implies

lim
s→∞

𝐼 + 𝐴

2

𝑠

=
𝐼 + 𝐴

2
=

1
1

0.5, 0.5 =
1
1

𝜋

Example



• We have derived some results based on the transition matrix …

• In practice, we are given data samples rather than the transition matrix 

• We will assume the data are sampled from a Markov chain, and then compute 
the transition matrix from data via maximum likelihood estimation (MLE)

Estimate Transition Parameters 𝜃 from Data



• Assume we have 𝑁 i.i.d. samples 𝒙 𝑛
𝑛=1

𝑁
 from distribution 𝑝𝜃(𝒙)

• 𝒙 ≔ (𝑥1, … , 𝑥𝑇)                                                             each 𝑥𝑡 has 𝐾 status

• 𝜃 = (𝐴, 𝜋): unknown transition matrix and initial probability distribution

• MLE: 

MLE of Markov Chains 𝑋1 𝑋2 𝑋𝑇−1⋯ ⋯ 𝑋𝑇

( መ𝐴𝑀𝐿, ො𝜋𝑀𝐿) = argmax𝐴,𝜋 ෑ

𝑛=1

𝑁

𝑝𝜋 𝑥1
(𝑛)

ෑ

𝑡=2

𝑇

𝑝𝐴 𝑥𝑡
𝑛

𝑥𝑡−1
𝑛

ො𝜋𝑀𝐿 = argmax𝜋 ෑ

𝑛=1

𝑁

𝑝𝜋 𝑥1
(𝑛) መ𝐴𝑀𝐿 = argmax𝐴 ෑ

𝑛=1

𝑁

ෑ

𝑡=2

𝑇

𝑝𝐴 𝑥𝑡
𝑛

𝑥𝑡−1
𝑛

( መ𝐴𝑀𝐿 , ො𝜋𝑀𝐿) = argmax𝐴,𝜋 ෑ

𝑛=1

𝑁

𝑝𝐴,𝜋(𝒙 𝑛 )

Markov Property

Similar to 
estimating 
መ𝐴𝑀𝐿, so left as 

an exercise 

Our focus next

Variables are separable



• 𝕀(⋅):             indicator function

• 𝑁𝑖𝑗:              the number of samples with transitions from state 𝑖 to state 𝑗, i.e.,

                                     𝑁𝑖𝑗 ≔ σ𝑛=1
𝑁 σ𝑡=2

𝑇 𝕀 𝑥𝑡
𝑛

= 𝑗, 𝑥𝑡−1
𝑛

= 𝑖  

Then we have:

1. 𝑝𝐴 𝑥𝑡
𝑛

𝑥𝑡−1
𝑛

= ς𝑖=1
𝐾 ς𝑗=1

𝐾 𝑎𝑖𝑗
𝕀 𝑥𝑡

𝑛
=𝑗, 𝑥𝑡−1

𝑛
=𝑖

2. ς𝑛=1
𝑁 ς𝑡=2

𝑇 𝑝𝐴 𝑥𝑡
𝑛

𝑥𝑡−1
𝑛

= ς𝑛=1
𝑁 ς𝑡=2

𝑇 ς𝑖=1
𝐾 ς𝑗=1

𝐾 𝑎𝑖𝑗
𝕀 𝑥𝑡

𝑛
=𝑗, 𝑥𝑡−1

𝑛
=𝑖

                                                           = ς𝑖=1
𝐾 ς𝑗=1

𝐾 𝑎𝑖𝑗
𝑁𝑖𝑗

This gives:

Simplifying The MLE
መ𝐴𝑀𝐿 = argmax𝐴 ෑ

𝑛=1

𝑁

ෑ

𝑡=2

𝑇

𝑝𝐴 𝑥𝑡
𝑛

𝑥𝑡−1
𝑛

መ𝐴𝑀𝐿 = argmax𝐴 ς𝑖=1
𝐾 ς𝑗=1

𝐾 𝑎𝑖𝑗
𝑁𝑖𝑗

 



• 𝑁𝑖𝑗:              the number of samples with transitions from state 𝑖 to state 𝑗

Taking logarithm and adding constraints σ𝑗 𝑎𝑖𝑗 = 1:

Simplifying The MLE
መ𝐴𝑀𝐿 = argmax𝐴 ς𝑖=1

𝐾 ς𝑗=1
𝐾 𝑎𝑖𝑗

𝑁𝑖𝑗
 

መ𝐴𝑀𝐿 = argmax𝐴 ෍

𝑖=1

𝐾

෍

𝑗=1

𝐾

𝑁𝑖𝑗 log 𝑎𝑖𝑗  subject to ෍

𝑗=1

𝐾

𝑎𝑖𝑗 = 1 (∀𝑖)

Solve the following for every 𝑖 = 1, … , 𝐾:

ෞ𝑎𝑖𝑗𝑀𝐿
= argmax𝑎𝑖𝑗

σ𝑗=1
𝐾 𝑁𝑖𝑗 log 𝑎𝑖𝑗  subject to σ𝑗=1

𝐾 𝑎𝑖𝑗 = 1 

Variables are separable

ෞ𝑎𝑖𝑗𝑀𝐿
=

𝑁𝑖𝑗

σ𝑗=1
𝐾 𝑁𝑖𝑗

Remark: The optimal transition matrix can be 
found by simply counting and classifying the 
number of the transitions of the sample states! 

Remark: We have seen how to solve 
it using Lagrangian multipliers (recall 
EM for Gaussian Mixture Models)



• Markov chains have several applications

• For irreducible transition matrix with at least one positive entry, the Markov chain 
will eventually a stationary distribution

• The transition matrix can be learned from data via maximum likelihood 
estimation

Conclusion
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