Deep Generative Models: Markov Models

Fall Semester 2024

René Vidal

Director of the Center for Innovation in Data Engineering and Science (IDEAS), Rachleff University Professor, University of Pennsylvania Amazon Scholar & Chief Scientist at NORCE

Taxonomy of Generative Models

Lecture Outline

- Stochastic Processes
	- Definition and Examples
- Markov Models and Markov Chains
	- Definition
	- Transition Probability and Transition Matrix
	- Examples
	- Stationarity and Convergence
- Maximum Log-Likelihood for Markov Chains

Stochastic Process

- Definition: A *stochastic process* refers to a sequence of random variables $(X_1, X_2, ..., X_T)$
- Each X_t takes values from the same sample space Ω (state space)
	- You can assume X_t has K states and $\Omega := \{1, ..., K\}$
- Example (Bernoulli Process):

$$
X_t \sim \text{Bernouli}(p), \qquad t = 1, \dots, T
$$

• How many states does X_t has? What is Ω ?

Markov Property Revisited

- **Issue**: Modeling the joint distribution $\mathbb{P}(X_1, X_2, ..., X_T)$ might require exponentially many parameters in the absence of any assumptions on P
- **Conditional Independence Assumption** (Markov property):

• **Consequence**: We now only need linearly many parameters: $\mathbb{P}(x_1, ..., x_T) = \mathbb{P}(x_1) \mathbb{P}(x_2 | x_1) \mathbb{P}(x_3 | x_1, x_2) \cdots \mathbb{P}(x_T | x_1, ..., x_{T-1})$ $= \mathbb{P}(x_1) p(x_2 | x_1) \mathbb{P}(x_3 | x_2) \cdots \mathbb{P}(x_T | x_{T-1})$

Markov Chains

• Definition: A (discrete time) *Markov chain* is a stochastic process $(X_1, X_2, ..., X_T)$ with the *Markov property*

$$
\mathbb{P}(x_1, ..., x_T) = \mathbb{P}(x_1)\mathbb{P}(x_2 | x_1)\mathbb{P}(x_3 | x_2) \cdots \mathbb{P}(x_T | x_{T-1})
$$

• Without Markov Property:

• With Markov Property:

Parameters of Markov Chains

- Initial Probability $\pi_1, ..., \pi_K: \pi_i := \mathbb{P}(X_1 = i)$.
- Transition Probability a_{ij} :

$$
a_{ij} := \mathbb{P}(X_{t+1} = j \mid X_t = i) \qquad \forall i, j \in \Omega = \{1, \dots, K\}
$$

- This is the probability that X_t transitions from state i to state j
- Matrix and Vector Notations:

$$
A \mathpunct{:}=\begin{bmatrix} a_{11} & \dots & a_{1K} \\ \vdots & \ddots & \vdots \\ a_{K1} & \dots & a_{KK} \end{bmatrix} \in \mathbb{R}^{K \times K}, \qquad \qquad \pi \mathpunct{:}=\begin{bmatrix} \pi_1, \dots, \pi_K \end{bmatrix} \in \mathbb{R}^{1 \times K}
$$

Row Vector

A Markov chain is fully specified by its parameters θ : = (π, A)

Example: Markov Sentence Model

- State space $\Omega = \{$ all possible words $\}$
	- The following are viewed as words and included in the state space
		- <s>: the start of the sentence
		- Digits
		- Punctuations
- Each sentence is a Markov chain where the words are random variables:

• Meaning of $\mathbb{P}(x_{t+1}|x_t)$: Given that the current word is x_t , what is the probability that the next word is x_{t+1} ?

- Example: DNA Sequencing
- State Space $\Omega = \{A, C, G, T\}$
-

• Transition Matrix A: Initial Probability Vector π :

- Question 1: Given C, what is the probability of getting DNA sequence $CTGAC$?
- Answer 1:

$$
\mathbb{P}(CTGAC|X_1 = C) = \mathbb{P}(C|T) \cdot \mathbb{P}(T|G) \cdot \mathbb{P}(G|A) \cdot \mathbb{P}(A|C) \approx 0.00403
$$

0.182 0.345 0.345 0.167 0.384

Example: DNA Sequencing

• State Space $\Omega = \{A, C, G, T\}$

- Question 2: What's the probability of $X_3 = A$ given $X_1 = C$?
- Question 3: What's the probability of $X_3 = A$?

Example: DNA Sequencing

• State Space $\Omega = \{A, C, G, T\}$

- Question 2: What's the probability of $X_3 = A$ given $X_1 = C$?
- Question 3: What's the probability of $X_3 = A$?
- Answer 2: The state transition is $C \to x_2 \to A$ for all possible $x_2 \in \Omega$:

$$
\mathbb{P}(X_3 = \mathcal{A}|X_1 = \mathcal{C}) = \sum_{x_2 \in \Omega} \mathbb{P}(X_3 = \mathcal{A}|X_2 = x_2) \cdot \mathbb{P}(X_2 = x_2 | X_1 = \mathcal{C})
$$

= [0.384, 0.156, 0.023, 0.437]
$$
\begin{bmatrix} 0.359 \\ 0.384 \\ 0.306 \\ 0.284 \end{bmatrix}
$$

- \bullet This is the inner product of the second row and first column of the transition matrix A
- This is the $(2,1)$ -th entry of A^2

Example: DNA Sequencing

• State Space $\Omega = \{A, C, G, T\}$

- Question 2: What's the probability of $X_3 = A$ given $X_1 = C$?
- Question 3: What's the probability of $X_3 = A$?
- Answer 2: The state transition is $C \to x_2 \to A$ for all possible $x_2 \in \Omega$:

$$
\mathbb{P}(X_3 = \mathcal{A}|X_1 = \mathcal{C}) = \sum_{x_2 \in \Omega} \mathbb{P}(X_3 = \mathcal{A}|X_2 = x_2) \cdot \mathbb{P}(X_2 = x_2 | X_1 = \mathcal{C})
$$

• Answer 3: The state transition is $x_1 \rightarrow x_2 \rightarrow A$ for all possible $x_1, x_2 \in \Omega$:

$$
\mathbb{P}(X_3 = \mathcal{A}) = \sum_{x_1 \in \Omega} \mathbb{P}(X_3 = \mathcal{A} | X_1 = x_1) \cdot \mathbb{P}(X_1 = x_1)
$$

Question 2
Initial Probability

Generalizing the DNA Sequencing Example

- State Space $\Omega = \{1, ..., K\}$
- $(A^s)_{ij}$: the (i, j) -th entry of A^s
- \bullet (A^s) $\mathbf{r}_{:j}$: the j -th column of $A^{\mathcal{S}}$
- $(\cdot)_j$: the *j*-th entry of a vector

Transition Matrix A and initial probability distribution π : $A: =$ a_{11} … a_{1K} \vdots \vdots \vdots a_{K1} … a_{KK} $\in \mathbb{R}^{K \times K}$, $\pi := [\pi_1, ..., \pi_K] \in \mathbb{R}^{1 \times K}$

- Claim 1: $\mathbb{P}(X_{t+s} = j \mid X_t = i) = (A^s)$ $(\forall s, t, i, j)$
- Claim 2: $\mathbb{P}(X_{s+1} = j) = (\pi A^s)$ $(\forall s, j)$
- Proof of Claim 2:

$$
\mathbb{P}(X_{s+1} = j) = \sum_{i \in \Omega} \mathbb{P}(X_{s+1} = j | X_1 = i) \cdot \mathbb{P}(X_1 = i) = \sum_{i \in \Omega} (A^s)_{ij} \cdot \pi_i = \pi(A^s)_{:j} = (\pi A^s)_j
$$

Claim 1

• Proof of Claim 1: By induction (next page)

Proof of Claim 1

- State Space $\Omega = \{1, ..., K\}$
- $(A^s)_{ij}$: the (i, j) -th entry of A^s
- \bullet (A^s) $\mathbf{r}_{:j}$: the j -th column of $A^{\mathcal{S}}$
- $(\cdot)_j$: the *j*-th entry of a vector

Transition Matrix A and initial probability distribution π : a_{11} … a_{1K}

$$
A = \begin{bmatrix} \vdots & \ddots & \vdots \\ a_{K1} & \cdots & a_{KK} \end{bmatrix} \in \mathbb{R}^{K \times K}, \qquad \pi := [\pi_1, \dots, \pi_K] \in \mathbb{R}^{1 \times K}
$$

- Claim 1: $\mathbb{P}(X_{t+s} = j \mid X_t = i) = A_{ij}^s$
- Proof of Claim 1 (Induction):
	- $\forall s, t$, it is easy to prove shift invariance: $\mathbb{P}(X_{t+s} = j \mid X_t = i) = \mathbb{P}(X_{1+s} = j \mid X_1 = i)$
	- Next we prove $\mathbb{P}(X_{1+s} = j \mid X_1 = i) = A_{ij}^s$ by induction on s:
		- The base case $s = 1$ follows from the definition of A
		- Suppose we have $\mathbb{P}(X_s = j \mid X_1 = i) = A_{ij}^{s-1}$ then:

$$
\mathbb{P}(X_{1+s} = j \mid X_1 = i) = \sum_{k \in \Omega} \mathbb{P}(X_{s+1} = j \mid X_s = k) \cdot \mathbb{P}(X_s = k \mid X_1 = i) = \sum_{k \in \Omega} a_{kj} \cdot (A^{s-1})_{ik} = (A^s)_{ij}
$$

Limiting Behavior of Markov Chains

• We have just proved

$$
\mathbb{P}(X_{t+s} = j \mid X_t = i) = (A^s)_{ij} \qquad (\forall s, t, i, j)
$$

$$
\mathbb{P}(X_{s+1} = j) = (\pi A^s)_j \qquad (\forall s, j)
$$

- Our next goal is to understand the limits $\lim A^s$, $\lim \pi A^s$. s→∞ s→∞
- The two limits are related to the eigenvalues of A :
	- Assume A is diagonalizable and write $A=U\Lambda U^{-1}$ with eigenvalues $\Lambda=\text{diag}(\lambda_1,...\,,\lambda_K)$
		- The diagonalizability assumption is not necessary but to simplify the exposition…
	- Then we have

$$
\lim_{s \to \infty} A^s = U \left(\lim_{s \to \infty} \Lambda^s \right) U^{-1}, \qquad \lim_{s \to \infty} \pi A^s = \pi U \left(\lim_{s \to \infty} \Lambda^s \right) U^{-1}
$$

• Hence, a necessary condition for the limits to exist is that $|\lambda_k| \leq 1$ for all k.

Eigenvalues of Transition Matrix

$$
A = \begin{bmatrix} a_{11} & \dots & a_{1K} \\ \vdots & \ddots & \vdots \\ a_{K1} & \dots & a_{KK} \end{bmatrix} \in \mathbb{R}^{K \times K}
$$

• Proposition. Let $\lambda_1, ..., \lambda_k$ be eigenvalues of A. Then

$$
\max_{k=1,\dots,K} |\lambda_k| = 1.
$$

• Proof. We first show $|\lambda_k| \leq 1$. Let (λ, u) be an eigen-pair with $Au = \lambda u$, $||u||_2 =$ 1 and $u = [u_1, ..., u_K]^T$. Let *i* be the index such that $|u_i|$ is maximized, i.e., $i = \text{argmax}_j |u_j|.$

Then $Au = \lambda u$ implies $\sum_j a_{ij} u_j = \lambda u_i$, which furthermore gives $\lambda | \leq$ $\sum_j a_{ij}^{'} u_j$ u_i \leq $\Big|a_{ij}\Big|$. j l l j u_j u_i \leq $\Big|a_{ij}\Big| = \Big|$ j $a_{ij} = 1.$ Finally, A always has an eigenvalue 1: A 1 1 $\ddot{\cdot}$ 1 = 1 1 $\ddot{\bullet}$ 1

$|\lambda_k| \leq 1$ is not sufficient for convergence

• Intuition:

- Assume A is diagonalizable and write $A=U\Lambda U^{-1}$ with eigenvalues $\Lambda=\text{diag}(\lambda_1,...\,,\lambda_K)$
	- The diagonalizability assumption is not necessary but to simplify the exposition…

• Then
$$
\lim_{s \to \infty} A^s = U(\lim_{s \to \infty} \Lambda^s) U^{-1} = U(\text{diag}(\lim_{s \to \infty} \lambda_1^s, ..., \lim_{s \to \infty} \lambda_K^s)) U^{-1}
$$

- And lim s→∞ λ_k^s ...
	- is equal to 0 if $|\lambda_k|$ < 1
	- is equal to 1 if $\lambda_k = 1$
	- does not exist if $\lambda_k = -1$
- λ_k can even be a complex eigenvalue with $|\lambda_k| = 1$

Lesson

- Existence. In order for $\lim A^s$, $\lim \pi A^s$ to exist, we need to make assumptions s→∞ s→∞ such that:
	- A has no eigenvalues of magnitude 1 other than 1 itself.
- Uniqueness. In order for $\lim \pi A^s$ to be the same for different initial distribution s→∞ π , we need to make assumptions such that:
	- 1 is the eigenvalue of A of geometric/algebraic multiplicity 1

- The assumptions should be "interpretable" in terms of Markov chains or states
	- e.g., assuming A to be diagonalizable is not interpretable

Irreducibility and Strongly Connected Graph

- Definition. A directed graph is called *strongly connected* if there is a path in each direction between each pair of vertices of the graph.
- Definition. A transition matrix A is called *irreducible* if every state can be reached from any other state, i.e., for any i, j , there is some t such that $\mathbb{P}(X_t = j \mid X_1 = i) > 0.$
- Remark. Each state can be denoted by a vertex and, if $a_{ij} > 0$ then we add a directed edge from vertex i to vertex j . This way, we obtain a directed graph. We can see that A is irreducible if and only if the graph is strongly connected

Limiting Behavior of Markov Chains

 \overline{S}

s→∞

- Theorem. Assume A is irreducible, then there is some $v = [v_1, ..., v_K]$ such that
	- For any initial distribution π we have: lim $I + A + \cdots + A^{s-1}$ $= ev,$ lim π $I + A + \dots + A^{s-1}$

$$
e \coloneqq \begin{bmatrix} 1 \\ 1 \\ \vdots \\ 1 \end{bmatrix}
$$

 $= v$

• If furthermore there is some $a_{ij} > 0$, then for any initial distribution π we have

$$
\lim_{s \to \infty} A^s = ev, \qquad \lim_{s \to \infty} \pi A^s = v
$$

s→∞

 \overline{S}

• Remark. In the latter case, v is called the stationary distribution as it is the unique vector that satisfies:

$$
\nu A = \nu, \qquad \nu_i > 0 \, (\forall i), \qquad \sum_i \nu_i = 1
$$

• Remark on Proof. This result is related to Perron–Frobenius Theory (Google search it). For its proof, see Chapter 7 (Perron–Frobenius Theory) of "*Matrix Analysis and Applied Linear Algebra*"*, Second Edition (Carl D. Meyer, 2023)*.

Example

• Let
$$
A = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}
$$
 and $v = [0.5, 0.5]$ and $I = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$. Note that $a_{11} = a_{22} = 0$

- A has two eigenvalues, 1 and -1 .
- We have $A^{2t} = I$ and $A^{2t+1} =$ 0 1 1 0 for any t , so \lim s→∞ $A^{\mathcal{S}}$ does not exist.
- We have $vA = [0.5, 0.5]$ 0 1 1 0 $=[0.5, 0.5] = \nu$, so lim s→∞ $vA^s = [0.5, 0.5]$. However, for any initial distribution π different from v , \lim s→∞ πA^s does not exist.
- On the other hand, we have $\left(\frac{I+A}{2}\right)$ 2 2 = 0.5 0.5 0.5 0.5 = $I+A$ 2 , which implies

$$
\lim_{s \to \infty} \left(\frac{I + A}{2} \right)^s = \frac{I + A}{2} = \begin{bmatrix} 1 \\ 1 \end{bmatrix} [0.5, 0.5] = \begin{bmatrix} 1 \\ 1 \end{bmatrix} \pi
$$

Estimate Transition Parameters θ from Data

• We have derived some results based on the transition matrix …

• In practice, we are given data samples rather than the transition matrix

• We will assume the data are sampled from a Markov chain, and then compute the transition matrix from data via **maximum likelihood estimation (MLE)**

MLE of Markov Chains $(x_1) \rightarrow (x_2)$

- Assume we have N i.i.d. samples $\{x^{(n)}\}$ $n=1$ \boldsymbol{N} from distribution $p_{\boldsymbol{\theta}}(\boldsymbol{x})$
	- $x := (x_1, ..., x_T)$ each x_t has K status
	- $\theta = (A, \pi)$: unknown transition matrix and initial probability distribution

- Simplifying The MLE
- $\mathbb{I}(\cdot)$: indicator function

$$
\hat{A}_{ML} = \text{argmax}_{A} \prod_{n=1}^{N} \prod_{t=2}^{T} p_A \left(x_t^{(n)} \mid x_{t-1}^{(n)} \right)
$$

• N_{ij} : the number of samples with transitions from state *i* to state *j*, i.e.,

$$
N_{ij} := \sum_{n=1}^{N} \sum_{t=2}^{T} \mathbb{I}\left(x_t^{(n)} = j, x_{t-1}^{(n)} = i\right)
$$

Then we have:

1.
$$
p_A\left(x_t^{(n)} \mid x_{t-1}^{(n)}\right) = \prod_{i=1}^K \prod_{j=1}^K (a_{ij})^{\mathbb{I}\left(x_t^{(n)}=j, x_{t-1}^{(n)}=i\right)}
$$

\n2. $\prod_{n=1}^N \prod_{t=2}^T p_A\left(x_t^{(n)} \mid x_{t-1}^{(n)}\right) = \prod_{n=1}^N \prod_{t=2}^T \prod_{i=1}^K \prod_{j=1}^K (a_{ij})^{\mathbb{I}\left(x_t^{(n)}=j, x_{t-1}^{(n)}=i\right)}$
\n
$$
= \prod_{i=1}^K \prod_{j=1}^K (a_{ij})^{N_{ij}}
$$

This gives:

$$
\hat{A}_{ML} = \operatorname{argmax}_{A} \prod_{i=1}^{K} \prod_{j=1}^{K} (a_{ij})^{N_{ij}}
$$

Simplifying The MLE

$$
\hat{A}_{ML} = \operatorname{argmax}_{A} \prod_{i=1}^{K} \prod_{j=1}^{K} (a_{ij})^{N_{ij}}
$$

• N_{ij} : the number of samples with transitions from state *i* to state *j*

Taking logarithm and adding constraints $\sum_i a_{ij} = 1$:

Remark: We have seen how to solve it using Lagrangian multipliers (recall *EM for Gaussian Mixture Models*)

$$
\widehat{a_{ij}}_{ML} = \frac{N_{ij}}{\sum_{j=1}^{K} N_{ij}}
$$

Remark: The optimal transition matrix can be found by simply counting and classifying the number of the transitions of the sample states!

Conclusion

- Markov chains have several applications
- For irreducible transition matrix with at least one positive entry, the Markov chain will eventually a stationary distribution

• The transition matrix can be learned from data via maximum likelihood estimation